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Orientation distributions in droplets of liquid crystals with homeotropic anchoring are computed with a
simulated annealing algorithm that minimizes the free energy of the Oseen-Frank continuum theory. The
droplets exhibit multiple orientational steady states that are separated by finite energy barriers over the entire
range of the dimensionless ratio of surface to elastic forces, with maximum transition energy densities of the
order of 2000 J /m3 �Pa� for a typical liquid crystalline droplet with a spherical radius of 1 �m. The transition
energy densities decrease with elongation to spheroidal droplets with aspect ratios of four or more, indicating
that droplet elongation is favored to drive surface-induced transitions.
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I. INTRODUCTION

A. Nematic droplets

Droplets of a nematic liquid crystal dispersed in an iso-
tropic matrix are of interest in a variety of technologies and
control of the liquid crystal orientation in the droplet is an
essential feature for applications. The orientation is deter-
mined by a balance between the bulk nematic potential,
which favors alignment, and the surface potential, which of-
ten favors an orthogonal �homeotropic� orientation. The ori-
entational issues in liquid crystalline droplets are discussed
in a brief review by Lavrentovich �1� and in more detail in
the book by Drzaic �2�.

Multiple locally stable states can exist in liquid crystalline
droplets. We have recently found bistability in a dispersion
of the biphenylcarbonitrile 8CB in polydimethylsiloxane �3�,
for example, where dispersed droplets with a radial confor-
mation or a bicontinuous gel-like morphology can both exist.
We explore here the orientational morphologies of spherical
and spheroidal droplets of low molar-mass liquid crystals
using a simulated annealing approach, with particular atten-
tion paid to bistability and the transitions between locally
stable states.

B. Free energy

Nematic order in a low molar mass liquid crystal is de-
scribed by a position-dependent unit vector n, known as the
director. The free energy density of a bulk nematic can be
expressed in terms of n by the Oseen-Frank continuum
theory �4�,

f =
1

2
�k11�� · n�2 + k22�n · � � n�2 + k33�n � � � n�2

− k24 �· „n � � � n + n�� · n�…� , �1�

where the Frank elastic constants k11, k22, k33, and k24 are
associated with splay, twist, bend, and saddle-splay distor-
tions, respectively. �Our k24 is twice the saddle-splay coeffi-
cient defined by Kleman and Lavrentovich �4�. A mixed-
splay-bend term with an elastic coefficient k13 is usually
neglected because it involves higher-order derivatives of the

director field. The apparent higher-order saddle-splay terms
in Eq. �1� reduce in fact to first derivatives of the vector
field.� n and −n must be equivalent in a nematic.

When all four elastic constants are equal to a single con-
stant K, the bulk free energy density simplifies to

f =
1

2
K��n�:��n�T. �2�

The assumption of equal constants is only approximate for
real liquid crystals; for 4�-pentyl-4-biphenylcarbonitrile
�5CB�, for example, values of k33/k11=1.6 and k22/k11
=0.48 �4�, k33/k11=1.31 and k22/k11=0.51 �5�, and k33/k11
=1.4 and k22/k11=0.66 �6� have been reported. The ratio
k33/k11 appears to be of order 0.1, and k22/k11 less than 10−2,
in a liquid crystalline copolyesteramide �7�.

The saddle-splay constant k24 has received less attention
than the other elastic coefficients, in part because the saddle-
splay term can be expressed as a divergence that integrates to
a surface integral and is thus often neglected, but the term
can be important in nonplanar geometries. Saddle-splay ef-
fects are reviewed broadly in Crawford and Žumer �8�. Data
for k24 are quite limited; Polak and co-workers �6� estimate
k24/k11�3.1 for 5CB using an optical method, but note that
various bounding estimates would result in 1.2�k24/k11
�0.9. �They expressed their bounds in terms of 2k24/ �k11

+k22�, and we have used the reported values of k22/k11 for
5CB to rewrite the inequalities as shown here. The upper
bound is derived from an inequality by Ericksen �9� that
requires that k24 be less than twice the smaller of k11 or k22.
The Ericksen inequality is violated by the result obtained
from their optical measurements.� The Cauchy relation k24

= 1
2 �k11+k22� �10� is often assumed, and this relation is

roughly consistent with 2H-NMR measurements summarized
by Crawford and Žumer �8� for a deuterated 5CB.

The surface free energy density of a nematic at an inter-
face with a preferred radial orientation is usually given by
the single-constant Rapini and Papoular �11� form,

fS =
1

2
W sin2 � , �3�
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where W is a constant and � is the angle between the director
n and the preferred interfacial orientation �the easy direc-
tion�; this is a convenient functional form for the surface free
energy, in that it is bounded and approximates a leading-
order quadratic term for small angles. n minimizes the total
free energy, which is the sum of the volume integral of f and
the surface integral of fS.

C. Transitions

The equilibrium nematic orientation in a droplet is deter-
mined by the relative strengths of the surface and bulk
forces. It is helpful to consider two orientation distributions
for which the free energy can be calculated analytically in a
spherical droplet of radius R with radial anchoring. One is a
radial �or hedgehog� orientation, with a singularity at the
center; here the bulk contribution to the free energy equals
4�R�2k11−k24� and the surface free energy is zero, so the
total free energy is 4�R�2k11−k24�. The other is a perfectly
parallel orientation, for which the bulk free energy is zero
and the surface �and total� free energy is 4�WR2 /3. Accord-
ing to these values, the radial orientation is energetically fa-
vored if WR / �2k11−k24��3 and the parallel orientation is
favored if WR / �2k11−k24��3. Hence we expect an orienta-
tional transition when WR / �2k11−k24� is equal to 3. �A per-
fectly radial orientation is possible in principle, but there
must be some deviation from a perfectly parallel orientation
in the neighborhood of the surface, reducing the surface free
energy and introducing a small bulk free energy contribution.
Hence the actual transition is expected to occur at a value of
WR / �2k11−k24� that is greater than 3.� Heppenstall-Butler
et al. �12� and Tixier et al. �13� attribute different coales-
cence properties of small and large nematic droplets to such
a structural transition.

II. COMPUTATIONAL ALGORITHM

A. Discretization

We have employed a simulated annealing approach to
finding the minimizing vector field n in a liquid crystal drop-
let by discretizing the free energy and seeking the minimum
with a Metropolis Monte Carlo algorithm. The droplet is
circumscribed by a rectangular parallelepiped that is dis-
cretized into cubes of equal volume, and the vector field n is
defined by a discrete value in each element. The centroid of
the droplet is located at the intersection of eight central ele-
ments �four faces in each coordinate plane�, and a cubic el-
ement is considered to be contained within the droplet if the
centroid of the element lies within the droplet. The curved
surface of the droplet can be closely approximated by this
method with sufficiently fine discretization. Only directors in
the outermost layer of elements experience the surface po-
tential �Eq. �3��. �The discretized macroscopic free energy is
formally similar to the Lebwohl-Lasher �LL� molecular
model for liquid crystals �14–16�, in which molecules on a
cubic lattice interact through a nearest pair potential, but the
molecular model is not appropriate for macroscopic droplet
calculations. The LL model admits a nematic-isotropic phase
transition ��17� and references therein�.�

Straightforward discretization of the free energy density
in Eqs. �1� and �2� results in loss of equivalence of n and −n.
Hobdell and Windle �18� proposed rotating one of the vec-
tors through 180° whenever two vectors are at a relative
angle of more than 90°. We follow instead a procedure by
Gruhn and Hess �19� to retain nematic symmetry. �Hobdell
and Windle and Gruhn and Hess did not include the k24
term.� Equation �1� can be rewritten as

f =
1

2
�k22��n�:��n�T + �k33 − k22��n � � � n�2 + �k11 − k22��� · n�2 + �k24 − k22�„��n�:��n�T − �� · n�2 − �� � n�2

…� , �4�

which, because of the unit magnitude of n, is equivalent to

f =
1

2
�1

2
k22���n�n	����n�n	� +

1

2
�k33 − k11��n�n�����n	n
����n	n
� + �k11 − k22����n�n	����n�n	�

+ �k24 − k22�„���n�n	����n�n	� − ���n�n	����n�n	�…� . �5�

We have used subscript notation and the Einstein summation convention to avoid ambiguity. Equation �5� retains the equiva-
lence of n and −n following discretization.

Gruhn and Hess proposed implementing both forward and backward differences to approximate derivatives and averaging
over eight terms involving nearest neighbors. We find that it is adequate to average over two nearest neighbor terms, as
follows: The discretized bulk energy density at each lattice point is

f�i, j,k� =
1

4l2 �
�r,s,t����1,1,1�,�−1,−1,−1��

	 1

2
k22 �

�,	=1

3

�
�=1

3

�A���	�
�r,s,t� �i, j,k��2 + �k11 − k24��

�=1

3 
�
�=1

3

A�����
�r,s,t� �i, j,k��2

+
1

2
�k33 − k11� �

�,	=1

3 
�
�=1

3

n�
�r,s,t��i, j,k�A���	�

�r,s,t� �i, j,k��2

+ �k24 − k22�
�
�=1

3

�
�=1

3

�
	=1

3

A���	�
�r,s,t� A���	�

�r,s,t� �� . �6�
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Here l is the lattice spacing and the symbols A�i�	�
�r,s,t� are de-

fined as

A�1�	�
�r,s,t��0,0,0� = n�n	�r,0,0� − n�n	�0,0,0� ,

A�2�	�
�r,s,t��0,0,0� = n�n	�0,s,0� − n�n	�0,0,0� ,

A�3�	�
�r,s,t��0,0,0� = n�n	�0,0,t� − n�n	�0,0,0� . �7�

The total free energy of the system is then approximated by

E = �
All lattices

f�i, j,k�l3 +
1

2 �
Surface lattices

Wl2 sin2 � . �8�

In the single constant approximation, k11=k22=k33=k24=K,
the total free energy of the system is approximated by

E =
Kl

4 �
All lattices

�
Six NN of �i,j,k�

�1 − „n�i, j,k� · n�l,m,n�…2�

+
1

2 �
Surface lattices

Wl2 sin2 � , �9�

where �l ,m ,n� is the nearest neighbor �NN� of �i , j ,k�.

B. Accuracy

We have tested the accuracy of the discretization by en-
tering the analytical director distributions for two defect
structures, the hedgehog �radial� and col �hyperbolic�, re-
spectively, using the discretization to calculate the relative
contributions to the bulk free energy densities, which are as
follows:

Hedgehog: n = �x,y,z�/�x2 + y2 + z2�1/2,

Eb = 4�R�2k11 − k24� , �10a�

Col: n = �− x,y,z�/�x2 + y2 + z2�1/2,

Eb = 8�R
 k11

5
+

2k33

15
+

k24

6
� . �10b�

A comparison of the analytical values for the coefficients of
the various terms in the free energy densities with computed
values using 2�105 lattice cells is shown in Tables I and II.
The computed values using Gruhn and Hess’s algorithm are
also shown. The computed results are in good agreement
with the analytical values, and the two algorithms have com-
parable accuracy. �We assume throughout this study that the
center singularity, which is permitted by the Frank formal-
ism, is attainable. In a physical system there is likely to be a
small defect core.�

C. Free energy minimization

The system is initialized by choosing the vectors n�i , j ,k�
randomly, or by choosing a specific distribution �a parallel or
radial orientation, for example�. We then randomly choose a
lattice cell and randomly change the orientation of the direc-
tor within that cell. This move affects the free energy density
in the selected cell and the six nearest neighbors. The new
director orientation is accepted or rejected according to Me-
tropolis sampling, in which the new orientation is accepted
with probability p�nold→nnew�=min�1,exp− ��E /kBT��.
Temperature enters the mean-field Oseen-Frank theory only
implicitly through the temperature dependence of the physi-

TABLE I. Coefficients of free energy terms of a hedgehog point defect �Eq. �10a�� computed using 2
�105 lattice cells.

Analytical
Simulation �Gruhn and

Hess’s algorithm�
Simulation

�this algorithm�

Splay ��k11R� 8.0000 7.8785 7.8780

Twist ��k22R� 0.0000 0.0326 0.0323

Bend ��k33R� 0.0000 0.0204 0.0201

Saddle-splay ��k24R� −4.0000 −3.9833 −3.9833

Total 4.0000 3.9482 3.9471

TABLE II. Coefficients of free energy terms of a col point defect �Eq. �10b�� computed using 2�105

lattice cells.

Analytical
Simulation �Gruhn and

Hess’s algorithm�
Simulation

�this algorithm�

Splay ��k11R� 1.6000 1.5716 1.5714

Twist ��k22R� 0.0000 −0.0078 −0.0090

Bend ��k33R� 1.0667 1.0580 1.0575

Saddle-splay ��k24R� 1.3333 1.3277 1.3277

Total 4.0000 3.9495 3.9476
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cal constants, and fluctuations are not accounted for; hence T
is a fictitious temperature �the Monte Carlo temperature� that
is dependent on the lattice spacing. We initially fix the Monte
Carlo temperature at a high value to keep the system from
becoming trapped in a local minimum, and the temperature
is then gradually decreased.

The algorithm becomes inefficient as the system ap-
proaches the global free energy minimum, since increasing
numbers of trial moves are rejected; in that case, a scale
factor is introduced to restrict the magnitude of the change in
the orientation of n. The scale factor is adjusted to permit
acceptance of about 50 percent of the trial moves during the
simulations. The evolution of the total free energy and other
observables are obtained by computing averages over a
specified number of MC cycles, typically 20 000.

The calculations are carried out in dimensionless form. It
is straightforward to show for the case of a spherical droplet
of radius R with equal elastic coefficients that the only pa-
rameters �other than the dimensionless Monte Carlo tempera-
ture� are the lattice spacing l and the dimensionless group
WR /K. Hence changing the drop radius with a fixed lattice
spacing and changing the number of lattice sites for a fixed
drop size are equivalent calculations.

D. Order parameters

Nematic order is conventionally described by a global or-
der parameter S �usually denoted S�, which equals unity
when all directors are parallel and zero when the directors
are oriented randomly. We use the Zannoni approach �20� to
calculate S. We first calculate the average order matrix S��

over the N lattice points, as follows:

S�� =
1

N
�
i=1

N

n�in�i −
1

3
��. �11�

Here n�i is the projection of the unit vector on the coordinate
axes, where � ,�=x ,y ,z, and �� is Kronecker’s delta. S�� is
a symmetric matrix with zero trace. The global order param-
eter S is then defined in terms of the largest eigenvalue �1 of
S�� by

S =
3

2
�1. �12�

S equals zero not only for a random orientation, but also
when the orientation is radial. Chiccoli and co-workers �21�
introduced an orthogonal order parameter, which we denote
S�, defined for ellipsoids as follows:

S� =
1

N��
i=1

N �3

2
�ni · ri�2 −

1

2
�� . �13�

Here ri is the local normal to the concentric ellipsoid passing
through the center of the ith lattice cell. In the case of a
sphere, ri will always be a radial vector. Thus, for a radial
orientation in a spherical geometry, S� is unity and S is zero;
for a uniform orientation, S is unity and S� is zero. It is

FIG. 1. �a� Radial order parameter S� and �b� global order pa-
rameter S as functions of the anchoring strength parameter WR /K
for various discretizations.

FIG. 2. Director orientation for homeotropic anchoring with �a�
WR /K=4.2 and �b� WR /K=6.0.
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possible for S and S� to have comparable values in an el-
lipsoidal geometry with a large aspect ratio.

III. RESULTS FOR SPHERICAL DROPLETS

A. Spherical droplets with orthogonal (homeotropic)
surface anchoring

The calculated order parameters S and S� are shown as
functions of WR/K in Figs. 1�a� and 1�b�, respectively, for a
spherical droplet with orthogonal surface anchoring and
equal elastic coefficients. Random initial conditions were
used for these calculations, which were carried out with
14 328, 82 696, 179 904, 268 096, and 523 984 lattice cells,
corresponding to 2792, 8872, 14 936, 19 328, and 31 216
surface cells, respectively. There is convergence with respect
to the number of lattice sites. As expected, there is a first-
order transition from a nearly parallel conformation to a ra-
dial conformation at a critical value of WR /K; the critical
value of WR /K is about 5.95, which is somewhat larger than
the value of 3 that follows from the simple analysis above
based on a transition from a perfectly parallel alignment.

The equilibrium director orientation distribution is shown
for WR /K=4.2 �nearly parallel� and WR /K=6.0 �radial� in

Figs. 2�a� and 2�b�, respectively. These are planar cuts or-
thogonal to one axis, and the orientation distribution for
WR /K=4.2 would have a different appearance on another

FIG. 3. Simulated polarized optical micrographs for homeotro-
pic anchoring with �a� WR /K=4.2 and �b� WR /K=6.0.

FIG. 4. �a� Radial �S�� and �b� global �S� order parameters for
a spherical nematic drop with homeotropic anchoring and equal
elastic coefficients as functions of WR /K. ��� Global minimum.
��� Radial local minimum. ��� Axial local minimum.

FIG. 5. Bulk and surface free energies for equal elastic coeffi-
cients with WR /K=3.6 at different values of reduced Monte Carlo
temperature T*=kBT /Kl. Average bulk energies before and after the
transformation are ��Eb−Eb,eq�� /4�KR=129.25 and 128.65, respec-
tively, while average surface energies before and after the transfor-
mation are ��Es−Es,eq�� /4�KR=0.27 and 0.42, respectively.
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plane. Droplet order can be visualized more easily using
simulated polarized optical micrographs. We use a standard
matrix approach, similar to, for example, Berggren et al.
�22�, with a Jones matrix formalism �2,23�. The transmitted
intensities shown here were calculated from the full three-
dimensional distributions �shown in one plane in Fig. 2� by
assuming that the light has a wavelength of 0.55 �m, and
that the ordinary and extraordinary indices of refraction are

1.5 and 1.7, respectively. Simulated images for WR /K=4.2
and 6.0 are shown in Figs. 3�a� and 3�b�, respectively. The
radial morphology is clearly revealed through the classic
Maltese cross image in Fig. 3�b�. The details of the image for
the parallel orientation will depend on the relative angle of
the simulated polarized light beam and the mean orientation
direction.

B. Multiplicity

We have found that other locally stable states may exist
for equal elastic coefficients by starting simulated annealing
calculations with a radial distribution when WR /K is less

FIG. 6. Path in conformation space and corresponding energy in
passing from a locally stable radial conformation �A� to the aligned
free energy minimum state �B�.

FIG. 7. Estimated energy barrier as a function of WR /K.

FIG. 8. �a�–�d� Defect devel-
opment during the transition from
a locally stable radial conforma-
tion to the equilibrium axial con-
formation; WR /K=5.1.
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than the transition value and with a near-axial distribution
when WR /K is greater than the transition value, keeping the
Monte Carlo temperature �hence the fluctuations� small. In
such cases we obtain convergence to a second local mini-
mum in free energy; in the former case the local free energy
state is radial, while in the latter it is a parallel state with
increasing distortion as WR /K is increased. The order param-
eters for both the global and local minima are shown in Fig.
4, using 82 696 lattice cells as a compromise between accu-
racy and computational efficiency.

The complementary order parameters S and S� comprise
a minimal description of the droplet morphology. The simu-
lations converge to a local free energy minimum at each
value of the Monte Carlo temperature for a given WR /K and
specified starting conditions, and each of these converged
states is characterized by a unique pair �S ,S��. Hence incre-
mental changes in the Monte Carlo temperature, starting
from a local minimum, will provide a path through the con-
formation space along a sequence of feasible quasistatic
states; this path can be tailored to lead to the global mini-
mum by first increasing the Monte Carlo temperature until
the morphology has changed from one qualitative type to the
other, then decreasing the temperature to reach the equilib-
rium state. Figure 5, for example, shows the bulk and surface
energies at WR /K=3.6 for a succession of successful Monte
Carlo steps at increasing dimensionless Monte Carlo �MC�

temperatures T*=kBT /Kl, where T is the MC temperature.
The transition from a radial conformation to an orientation
with substantial alignment occurs for T* between 0.337 and
0.347. �A nematic-isotropic transition occurs at T*=0.375.�
The small increase in the surface energy �0.6�KR� is offset
by the small decrease �2.4�KR� in the bulk energy, with a
net change in the total free energy of only 0.35%. The se-
quence of states in the S-S� plane, together with the corre-
sponding free energies as a three-dimensional curve, are
shown in Fig. 6. The transition between two states with simi-
lar energies, and the corresponding development of global
alignment, is readily seen. The difference between the free
energy of the initial state and the maximum free energy
along the path is an upper bound for the height of the energy
barrier between the local and global equilibrium states; it is
only an upper bound because our algorithm gives a particular
path through the conformation space, and another path might
exist that has a lower barrier.

The estimated energy barrier is shown as a function of
WR /K in Fig. 7. The maximum corresponds to an energy
density of about 2000 J /m3 �Pa� for a droplet with a radius
of 1 �m and a typical elastic coefficient of 5�10−12 N. This
energy density could be transmitted mechanically in a dilute
suspension with a suspension viscosity of 50 Pa s at a shear
rate of about 40 s−1; it would require shear rates of the order
of 80 000 s−1 for a suspension with a viscosity comparable to
a typical nematic viscosity of 0.025 Pa s.

FIG. 9. �a�–�d� Defect devel-
opment and transition between a
locally stable radial conformation
and an equilibrium axial confor-
mation; WR /K=0.6. The final
state, which is completely dark
except for a thin region near the
surface, is not shown.
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Figure 8 shows the progression of the structural change
with Monte Carlo steps during the transition from a locally
stable radial conformation to the stable aligned conformation
at WR /K=5.1, which is close to the transition. Radial order
is initially lost in the region of the singularity at the origin,
and the parallel orientation then spreads outward to envelop
the entire droplet. The sequence is different during a transi-
tion from radial to axial with weak anchoring, as shown in
Fig. 9; in this case the singularity moves asymmetrically
from the center towards a point on the surface as the parallel
orientation develops. During a transition from an aligned
conformation to a strong-anchoring global minimum �not
shown�, two defects originate at opposite poles and progress
to the center.

C. Unequal elastic coefficients

We have examined the effect of the saddle-splay coeffi-
cient k24 by carrying out droplet calculations in which k11
=k22=k33 and the ratio k24/k11 is varied between 2/3 and
4/3. The first-order transition between axial and radial con-
formations remains unchanged when WR /K is replaced by
the parameter WR / �2k11−k24�, although there are small dif-
ferences in the axial order parameter prior to the transition.

The transition is broader, and the parallel and radial order
before and after the transition less perfect because of the
presence of twist distortions, when k22/k11�1. Figure 10
shows the order parameters S and S� as functions of
WR / �2k11−k24� with k33/k11=1.31 and k22/k11=0.51 �typical

of 5CB at room temperature� and k24= �k11+k22� /2, together
with the curves for equal elastic coefficients. The minimum
energy structures obtained in simulated annealing calcula-
tions starting from a random initial state in the region be-
tween the two dashed lines, roughly 4.5�WR / �2k11−k24�
�7.3, were not consistently reproducible and often reflected
“escaped” structures that differed significantly from the par-

FIG. 11. Simulated optical micrographs for elastic constants
characteristic of 5CB; WR / �2k11−k24� �a� 7.19, �b� 8.27, and �c�
21.77.

FIG. 10. �a� Radial order parameter S� and �b� global order
parameter S as functions of anchoring strength parameter
WR / �2k11−k24� for equal elastic coefficients and elastic coefficients
characteristic of 5CB.
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allel or radial morphologies computed at lower and higher
values of WR / �2k11−k24�. The simulated micrograph in Fig.
11�a� shows one realization for WR / �2k11−k24�=7.19, for
example, in which there is a substantial core region with an
escaped structure. Radial orientation is always achieved from
a random initial condition at WR / �2k11−k24�=8.27, but it is
distorted by twist, as shown in Fig. 11�b�. Some twist distor-
tion persists even at extremely strong anchoring, as seen in
Fig. 11�c� for WR / �2k11−k24�=21.8, since the small ratio of
twist to splay constants makes splay deformations energeti-
cally unfavorable.

IV. RESULTS FOR SPHEROIDAL DROPLETS

The order parameters for spheroidal droplets with equal
elastic coefficients are shown in Figs. 12�a� and 12�b� as
functions of WR /K for various values of D= �L−B� / �L+B�,
where L and B are the major and minor axes of the spheroid,
respectively. �D=0.78 corresponds to L /B=8, for example.�
R is based on the radius of the sphere with the same volume.
The transition is sharp for small values of D, but it becomes
gradual for large extensions. This is because the orientation
distribution in a highly elongated droplet with strong homeo-
tropic anchoring is nearly parallel over a large fraction of the
droplet volume. S and S� are nearly equal for D=0.78 with
strong anchoring.

As with spherical droplets, the system can become
trapped in a local minimum in the energy surface and exhibit
multiplicity. Such trapping could occur physically by, say,
deforming a sphere with homeotropic anchoring that has a

radial orientation to a value of D such that a parallel orien-
tation is the minimum energy state. �This would occur, for
example, if a sphere with WR /K=10 were to be deformed to
a spheroid with D�0.67.� As with the spherical droplets, we
have estimated the energy barrier between the local and glo-
bal minima by initializing the system in the local minimum
and then gradually increasing the Monte Carlo temperature
until the transition occurs. Figure 13, for example, shows the
structural evolution from a droplet with a parallel distribu-
tion �Fig. 13�a�� to the globally stable orthogonal distribution
with a singularity at the center �Fig. 13�c�� for WR /K=30
and D=0.5. Figure 13�b� is an intermediate state that persists
during the transition and seems to occupy a local minimum;
here, two singularities separate orthogonal end regions from
an essentially parallel center. The reverse process is observed
for very strong anchoring, where the lowest energy state for
a large elongation is parallel; in this case the center singular-
ity from the radial spherical droplet separates into two sin-
gularities that migrate to the ends during the transition to the
parallel orientation. The estimated energy barriers as func-
tions of WR /K are shown in Fig. 14 for spheroids with D
ranging from 0 to 0.78. The broken lines indicate small
ranges of WR /K where the algorithm was not effective be-

FIG. 12. �a� Orthogonal order parameter S� and �b� global order
parameter S as functions of the anchoring strength parameter
WR /K for spheroidal droplets at various values of the deformation
parameter D.

FIG. 13. �a�–�c� Transition from a parallel conformation to the
equilibrium orthogonal conformation; WR /K=30; D=0.5.
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FIG. 14. Estimated energy barriers as functions of WR /K for
spheroids with various values of D.
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cause of the absence of a large shift in the values of the order
parameter pairs. The maximum transition energy is substan-
tially reduced by elongation to aspect ratios of four or more
�D�0.6�.

V. CONCLUSIONS

Simulated annealing is an effective computational scheme
for calculating minimum free energy orientation distributions
and transitions between local mimina in the energy landscape
of liquid crystalline droplets. The simulation results establish
the morphological richness of these droplets, even in the ap-
proximation of equal elastic coefficients. Multiple steady
states that are separated by finite energy barriers exist for
spherical and spheroidal droplets with homeotropic anchor-

ing over the entire range of the dimensionless ratio of surface
to elastic forces, with maximum transition energy densities
of the order of 2000 J /m3 �Pa� for a typical liquid crystalline
droplet with a spherical radius of 1 �m. The transition en-
ergy density decreases with elongation to aspect ratios of
four or more, indicating that elongation is favored to drive
surface-induced transitions.
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